The Interpretation of Intuitionistic Type Theory in Locally Cartesian Closed Categories - an Intuitionistic Perspective

نویسندگان

  • Alexandre Buisse
  • Peter Dybjer
چکیده

We give an intuitionistic view of Seely’s interpretation of Martin-Löf’s intuitionistic type theory in locally cartesian closed categories. The idea is to use Martin-Löf type theory itself as metalanguage, and E-categories, the appropriate notion of categories when working in this metalanguage. As an E-categorical substitute for the formal system of Martin-Löf type theory we use E-categories with families (E-cwfs). These come in two flavours: groupoid-style E-cwfs and proofirrelevant E-cwfs. We then analyze Seely’s interpretation as consisting of three parts. The first part is purely categorical: the interpretation of groupoid-style E-cwfs in E-locally cartesian closed categories. (The key part of this interpretation has been type-checked in the Coq system.) The second is a coherence problem which relates groupoid-style E-cwfs with proofirrelevant ones. The third is a purely syntactic problem: that proof-irrelevant E-cwfs are equivalent to traditional lambda calculus based formulations of Martin-Löf type theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Interpretation of Type Theory in Locally Cartesian Closed Categories

We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to deene a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of extensional type theory in intensional type theory.

متن کامل

The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories

Seely’s paper Locally cartesian closed categories and type theory contains a well-known result in categorical type theory: that the category of locally cartesian closed categories is equivalent to the category of Martin-Löf type theories with Π,Σ, and extensional identity types. However, Seely’s proof relies on the problematic assumption that substitution in types can be interpreted by pullback...

متن کامل

Kripke Semantics for Martin-Löf's Extensional Type Theory

It is well-known that simple type theory is complete with respect to nonstandard set-valued models. Completeness for standard models only holds with respect to certain extended classes of models, e.g., the class of cartesian closed categories. Similarly, dependent type theory is complete for locally cartesian closed categories. However, it is usually difficult to establish the coherence of inte...

متن کامل

Categorical Models for Intuitionistic and Linear Type Theory

This paper describes the categorical semantics of a system of mixed intuitionistic and linear type theory (ILT). ILT was proposed by G. Plotkin and also independently by P. Wadler. The logic associated with ILT is obtained as a combination of intuitionistic logic with intuitionistic linear logic, and can be embedded in Barber and Plotkin's Dual Intuitionistic Linear Logic (DILL). However, unlik...

متن کامل

Data types with symmetries and polynomial functors over groupoids

Polynomial functors (over Set or other locally cartesian closed categories) are useful in the theory of data types, where they are often called containers. They are also useful in algebra, combinatorics, topology, and higher category theory, and in this broader perspective the polynomial aspect is often prominent and justifies the terminology. For example, Tambara’s theorem states that the cate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2008